Eigenvalues of the fractional Laplace operator in the unit ball
نویسندگان
چکیده
We describe a highly efficient numerical scheme for finding two-sided bounds for the eigenvalues of the fractional Laplace operator (−∆)α/2 in the unit ball D ⊂ Rd, with a Dirichlet condition in the complement of D. The standard Rayleigh–Ritz variational method is used for the upper bounds, while the lower bounds involve the less-known Aronszajn method of intermediate problems. Both require explicit expressions for the fractional Laplace operator applied to a linearly dense set of functions in L2(D). We use appropriate Jacobi-type orthogonal polynomials, which were studied in a companion paper [15]. Our numerical scheme can be applied analytically when polynomials of degree two are involved. This is used to partially resolve the conjecture of T. Kulczycki, which claims that the second smallest eigenvalue corresponds to an antisymmetric function: we prove that this is the case when either d ≤ 2 and α ∈ (0, 2], or d ≤ 9 and α = 1, and we provide strong numerical evidence in the general case.
منابع مشابه
On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator
In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...
متن کاملInverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems
In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results how that the simplicity and efficiency of this method.
متن کاملAiry equation with memory involvement via Liouville differential operator
In this work, a non-integer order Airy equation involving Liouville differential operator is considered. Proposing an undetermined integral solution to the left fractional Airy differential equation, we utilize some basic fractional calculus tools to clarify the closed form. A similar suggestion to the right FADE, converts it into an equation in the Laplace domain. An illustration t...
متن کاملParabolic starlike mappings of the unit ball $B^n$
Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^nsubseteqmathbb{C}^n$ given by $$Phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$ where $gammain[0,1/2]$, $z=(z_1,hat{z})in B^n$ and $$Psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$ in which $betain[0,1]$, $f(z_1)neq 0$ a...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. London Math. Society
دوره 95 شماره
صفحات -
تاریخ انتشار 2017